Progress Towards Probing Conformational Changes in the Srs2 Helicase: A Proposed Intrinsically Unstructured Protein

Kiel Charles Shaley
Indiana University of Pennsylvania

Follow this and additional works at: https://knowledge.library.iup.edu/etd

Recommended Citation

This Thesis is brought to you for free and open access by Knowledge Repository @ IUP. It has been accepted for inclusion in Theses and Dissertations (All) by an authorized administrator of Knowledge Repository @ IUP. For more information, please contact sara.parme@iup.edu.
STUDENT HAS RESTRICTED ACCESS TO FULL TEXT OF THE DISSERTATION.

ONLY COVER PAGES AND ABSTRACT ARE AVAILABLE AT THIS TIME
A Thesis
Submitted to the School of Graduate Studies and Research
in Partial Fulfillment of the
Requirements for the Degree
Master of Science

Kiel Charles Shaley
Indiana University of Pennsylvania
August 2013
Indiana University of Pennsylvania
School of Graduate Studies and Research
Department of Chemistry

We hereby approve the thesis of

Kiel Charles Shaley

Candidate for the degree of Master of Science

____________________________
Jana L. Villemain, Ph.D.
Professor of Chemistry, Advisor

____________________________
John C. Ford, Ph.D.
Professor of Chemistry

____________________________
Keith S. Kyler, Ph.D.
Professor of Chemistry

____________________________
Jonathan N Southard, Ph.D.
Professor of Chemistry

ACCEPTED

____________________________
____________________________
Timothy P. Mack, Ph.D.
Dean
School of Graduate Studies and Research

iii
This thesis examines the beginning steps of the investigation into possible conformational changes in the C-terminus of the Srs2 helicase. This portion of the protein was predicted, using bioinformatics programs, like GlobPlot\(^1\) and IUpred\(^2\), to possess characteristics related to the class of proteins known as intrinsically unstructured proteins. Initially, the full length Srs2 protein was expressed in BL21 (DE3) (Rosetta 2) cells and preliminary steps were taken to isolate it using an Ni-NTA column. Next, a set of bacterial transcription factors were expressed and subsequently isolated using an Ni-NTA column. To produce C-terminal portions of Srs2, two inserts were cloned separately into the pET 28a\(^+\) plasmid. These plasmids were then transferred into a variety of cell lines. This includes the DH5\(_\alpha\) (plasmid isolation) and Rosetta 2 (protein expression) cells. After expression optimization, several protein purification trials were conducted.