The Influence of Paramecium Tetraurelia on Bacteriophages in Aquatic Ecosystems: Ingestion Without Inactivation

Jessica M. Richards
Indiana University of Pennsylvania

Follow this and additional works at: http://knowledge.library.iup.edu/etd

Recommended Citation
http://knowledge.library.iup.edu/etd/1126

This Thesis is brought to you for free and open access by Knowledge Repository @ IUP. It has been accepted for inclusion in Theses and Dissertations (All) by an authorized administrator of Knowledge Repository @ IUP. For more information, please contact cclouser@iup.edu, sara.parme@iup.edu.
THE INFLUENCE OF *PARAMECIUM TETRAURELIA* ON BACTERIOPHAGES IN AQUATIC ECOSYSTEMS:

INGESTION WITHOUT INACTIVATION

A Thesis
Submitted to the School of Graduate Studies and Research
in Partial Fulfillment of the
Requirements for the Degree
Master of Science

Jessica Richards
Indiana University of Pennsylvania
May 2012
Indiana University of Pennsylvania
School of Graduate Studies and Research
Department of Biology

We hereby approve the thesis of

Jessica M. Richards

Candidate for the degree of Master of Science

Robert Hinrichsen, Ph.D.
Professor of Biology, Advisor

Robert Major, Ph. D.
Professor of Biology

Carl Luciano, Ph. D.
Biology Department Chair, Professor of Biology

ACCEPTED

Timothy P. Mack, Ph.D.
Dean
School of Graduate Studies and Research
Title: The Influence of *Paramecium tetraurelia* on Bacteriophages in Aquatic Ecosystems: Ingestion without Inactivation

Author: Jessica M. Richards

Thesis Chair: Dr. Robert D. Hinrichsen

Thesis Committee Members: Dr. Robert Major
 Dr. Carl Luciano

It is not known how and to what extent protozoa and viruses impact each other’s population though they both rely on bacterial populations. In some species of protozoa it has been shown that there is ingestion and inactivation of bacteriophages, having a regulatory effect on the phages for the benefit of the protozoa. This study investigated the interaction of *Paramecium tetraurelia* and the bacteriophages, T4, T5, and λ, in order to determine if there was ingestion and inactivation. Paramecia and phages were incubated together and aliquots were taken every hour and evaluated for phage concentration; additionally, lysis experiments were performed to determine if there was viable phage recovery. It was shown that the concentration of viruses remains approximately the same over time and that viable phages are recovered from lysed paramecia. Therefore, there is evidence suggesting paramecia ingest but, do not inactivate, the complex, double-stranded DNA phages used in this investigation.