The Effect of Adenylyl Cyclase Activity on the Regulation of the Ultradian Rhythm of Paramecium Tetraurelia

Rebecca S. Rosemeier

Indiana University of Pennsylvania

Follow this and additional works at: http://knowledge.library.iup.edu/etd

Recommended Citation
http://knowledge.library.iup.edu/etd/1161

This Thesis is brought to you for free and open access by Knowledge Repository @ IUP. It has been accepted for inclusion in Theses and Dissertations (All) by an authorized administrator of Knowledge Repository @ IUP. For more information, please contact cclouser@iup.edu, sara.parme@iup.edu.
STUDENT HAS RESTRICTED ACCESS TO FULL TEXT OF THE DISSERTATION.

ONLY COVER PAGES AND ABSTRACT ARE AVAILABLE AT THIS TIME
THE EFFECT OF ADENYLYL CYCLASE ACTIVITY ON THE REGULATION OF THE ULTRADIAN RHYTHM OF *PARAMECIUM TETRAURELIA*

A Thesis
Submitted to the School of Graduate Studies and Research
in Partial Fulfillment of the Requirements for the Degree
Master of Science

Rebecca S. Rosemeier
Indiana University of Pennsylvania
August 2013
Indiana University of Pennsylvania
School of Graduate Studies and Research
Department of Biology

We hereby approve the thesis of

Rebecca S. Rosemeier

Candidate for the degree of Master of Science

____________________ ______________________
Robert Hinrichsen, Ph.D.
Associate Professor of Biology, Advisor

Megan Knoch, Ph.D.
Assistant Professor of Biology

Robert Major, Ph.D.
Assistant Professor of Biology

Timothy P. Mack, Ph.D.
Dean
School of Graduate Studies and Research
Paramecium tetraurelia possess an apparent ultradian rhythm in the frequency of a spontaneous avoidance response, which involves a brief reversal of swimming direction in the absence of external stimuli. This response is initiated by an action potential resulting from the influx of calcium ions into the cell via voltage-gated channels, dependent upon the activation of protein kinase A, which is caused by the presence of cAMP. The enzyme adenyl cyclase converts ATP to cAMP, activating protein kinase. Adenylyl cyclase may therefore play an important role in the regulation of the ultradian rhythms. The addition of an adenylyl cyclase blocking drug and gene silencing via RNAi decreased the number of SARs recorded over a 3-hour period, but did not alter the oscillation of the ultradian rhythm. These results suggest that AC is not involved in the regulation of ultradian oscillation, but is important for action potentials that generate ciliary motor reversal.